Q.
Let z=iω2 where ω is the imaginary cube root of unity and n is the smallest positive integer for which (z89+i97)94=zn then find the maximum value of nCr. [ Note :i2=−1]
49
113
Complex Numbers and Quadratic Equations
Report Error
Answer: 252
Solution:
complexiOMR We have z=iω2
Given L.H.S. =(z89+i97)94=((iω2)89+i)94=(iω178+i)94=(iω+i)94=i94(−ω2)94=−ω188=−ω2
Given R.H.S =zn=(iω2)n hence (iω2)n=−ω2 ⇒ Least positive integral value of n is 10 .
Hence 10Cr]max.=10C5=252 Ans. ]