Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Z denote the set of all integers where A = (a, b): a2 + 3b2 = 28, a, b ∈ Z and B = (a, b): a > b, a, b ∈ Z then the number of elements in A ∩ B is
Q. Let
Z
denote the set of all integers where
A
=
{(
a
,
b
)
:
a
2
+
3
b
2
=
28
,
a
,
b
∈
Z
}
and
B
=
{(
a
,
b
)
:
a
>
b
,
a
,
b
∈
Z
}
, then the number of elements in
A
∩
B
is
2649
189
Sets
Report Error
A
2
24%
B
6
47%
C
4
21%
D
5
8%
Solution:
A
=
{(
a
,
b
)
:
a
2
+
3
b
2
=
28
,
a
,
b
∈
Z
}
(
a
,
b
)
can be
(
1
,
3
)
,
(
−
1
,
3
)
,
(
1
,
−
3
)
,
(
−
1
,
−
3
)
,
(
5
,
1
)
(
−
5
,
1
)
,
(
5
,
−
1
)
,
(
−
5
,
−
1
)
,
(
4
,
2
)
,
(
−
4
,
2
)
,
(
4
,
−
2
)
,
(
−
4
,
−
2
)
n
(
A
)
=
12
,
n
(
B
)
=
∞
A
∩
B
=
{(
a
,
b
)
:
a
2
+
3
b
2
=
28
and
a
>
b
,
a
,
b
∈
Z
}
=
6