Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Z denote the set of all integers and A= (a,b):a2+3b2=28,a,b∈ Z and B= (a,b):a>b,a,b∈ Z . Then the number of elements in A∩ B is
Q. Let Z denote the set of all integers and
A
=
{(
a
,
b
)
:
a
2
+
3
b
2
=
28
,
a
,
b
∈
Z
}
and
B
=
{(
a
,
b
)
:
a
>
b
,
a
,
b
∈
Z
}
. Then the number of elements in
A
∩
B
is
2374
215
KEAM
KEAM 2007
Sets
Report Error
A
2
9%
B
3
14%
C
4
17%
D
5
9%
E
6
9%
Solution:
∵
A
=
{(
a
,
b
)
:
a
2
+
b
2
=
28
,
a
,
b
∈
Z
}
=
{(
5
,
1
)
,
(
−
5
,
−
1
)
(
5
,
−
1
)
,
(
−
5
,
1
)
(
1
,
3
)
,
(
−
1
,
−
3
)
,
(
−
1
,
3
)
(
1
,
−
3
)
,
(
4
,
2
)
(
−
4
,
−
2
)
(
4
,
−
2
)
,
(
−
4
,
2
)}
and
B
=
{(
a
,
b
)
:
a
>
b
,
a
,
b
∈
Z
}
∴
A
∩
B
=
{(
−
1
,
−
5
)
,
(
1
,
−
5
)
,
(
−
1
,
−
3
)
,
(
1
,
−
3
)
,
(
4
,
2
)
,
(
4
,
−
2
)}
∴
Number of elements in
A
∩
B
is 6.