Q.
Let z=(cosx)5 and y=sinx. Then the value of dy2d2z at x=92π is
537
109
Continuity and Differentiability
Report Error
Solution:
z=(cosx)5;y=sinxdxdz=−5cos4x⋅sinx;dxdy=cosx∴dydz=−5cos3x⋅sinx now dy2d2z=dxd(dydz)⋅dydx=−5dxd[cos3x⋅sinx]cosx1=−5[cos4x−3sin2x⋅cos2x]cosx1=−5(cos3x−3sin2x⋅cosx)=−5(cos3x−3cosx(1−cos2x))=−5(4cos3x−3cosx)=−5cos3x∴dy2d2z∣∣x=92π=−5cos120∘=25