Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z=((2 √3+2 i)8/(1-i)6)+((1+i)6/(2 √3-2 i)8). Then argument of z is
Q. Let
z
=
(
1
−
i
)
6
(
2
3
+
2
i
)
8
+
(
2
3
−
2
i
)
8
(
1
+
i
)
6
. Then argument of
z
is
939
173
Complex Numbers and Quadratic Equations
Report Error
A
6
5
π
B
6
π
C
−
6
π
D
−
6
5
π
Solution:
z
=
z
ˉ
2
6
z
1
8
+
z
ˉ
1
8
z
2
6
=
(
z
ˉ
2
)
6
(
z
ˉ
1
)
8
∣
z
1
∣
16
+
∣
z
2
∣
12
∴
ar
g
(
z
)
=
−
8
ar
g
(
z
ˉ
1
)
−
6
ar
g
(
z
ˉ
2
)
+
2
kπ
,
k
∈
I
=
8
ar
g
(
z
1
)
+
6
ar
g
(
z
2
)
+
2
kπ
=
8
⋅
6
π
+
6
⋅
4
π
+
2
kπ
=
3
4
π
+
2
3
π
−
2
π
=
6
5
π