Q.
Let Z1 and Z2 are two non zero complex numbers such that ∣Z1+Z2∣=∣Z1∣=∣Z2∣ then Z2Z1 can be equal to
where ω is the non real cubs root of unity.
400
108
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let Z1Z2=t⇒Z2=Z1t,t=0 ∴∣Z1(1+t)∣=∣Z1∣=∣Z1t∣ ∣1+t∣=1=∣t∣⇒t⋅t=1 now (1+t)(1+t)=tt 1+t+t+tt=tt ∴1+t+t=0 1+t+t1=0⇒t2+t+1=0 t=ω or ω2⇒C,D