Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation (x-x3) d y=(y+y x2-3 x4) d x, x>2 lf y(3)=3, then y(4) is equal to :
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
(
x
−
x
3
)
d
y
=
(
y
+
y
x
2
−
3
x
4
)
d
x
,
x
>
2
lf
y
(
3
)
=
3
, then
y
(
4
)
is equal to :
328
144
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
4
14%
B
12
76%
C
8
0%
D
16
10%
Solution:
(
x
−
x
3
)
d
y
=
(
y
+
y
x
2
−
3
x
4
)
d
x
⇒
x
d
y
−
y
d
x
=
(
y
x
2
−
3
x
4
)
d
x
+
x
3
d
y
⇒
x
2
x
d
y
−
y
d
x
=
(
y
d
x
+
x
d
y
)
−
3
x
2
d
x
⇒
d
(
x
y
)
=
d
(
x
y
)
−
d
(
x
3
)
Integrate
⇒
x
y
=
x
y
−
x
3
+
c
given
f
(
3
)
=
3
⇒
3
3
=
3
×
3
−
3
3
+
c
⇒
c
=
19
∴
x
y
=
x
y
−
x
3
+
19
at
x
=
4
,
4
y
=
4
y
−
64
+
19
15
y
=
4
×
45
⇒
y
=
12