Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y(x) be the solution of the differential equation (dy/dx) + 2y = f(x), where f(x) = begincases 1 &, textx ϵ [0,1] 0 &, textotherwise endcases If y(0) = 0 , then y ( (3/2) ) is :
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
d
x
d
y
+
2
y
=
f
(
x
)
, where
f
(
x
)
=
{
1
0
,
x
ϵ
[
0
,
1
]
,
otherwise
If
y
(
0
)
=
0
, then
y
(
2
3
)
is :
2772
214
JEE Main
JEE Main 2018
Differential Equations
Report Error
A
2
e
4
e
2
+
1
9%
B
2
e
1
18%
C
e
3
e
2
−
1
23%
D
2
e
3
e
2
−
1
49%
Solution:
d
x
d
y
+
2
y
=
f
(
x
)
is a linear differential equation
If
=
e
∫
2
d
x
=
e
2
x
solution of the above equation is
y
.
e
2
x
=
∫
0
x
f
(
x
)
.
e
2
x
d
x
+
C
y
(
x
)
=
e
−
2
x
∫
0
x
f
(
x
)
e
2
x
d
x
+
c
e
−
2
x
y
(
x
)
=
0
⇒
c
=
0
⇒
y
(
x
)
=
e
−
2
x
∫
0
x
f
(
x
)
e
2
x
d
x
y
(
3/2
)
=
e
−
3
[
∫
0
1
e
2
x
d
x
+
∫
1
3/2
0.0
x
]
=
2
e
−
3
[
e
2
−
1
]
=
2
e
3
e
2
−
1