Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y = y(x) be the solution of the differential equation, (dy/dx) + y tan x = 2x + x2 tan x, x ∈ ( - (π/2) , (π/2) ) , such that y(0) = 1. Then :
Q. Let
y
=
y
(
x
)
be the solution of the differential equation,
d
x
d
y
+
y
tan
x
=
2
x
+
x
2
tan
x
,
x
∈
(
−
2
π
,
2
π
)
, such that
y
(
0
)
=
1
. Then :
2829
249
JEE Main
JEE Main 2019
Differential Equations
Report Error
A
y
′
(
4
π
)
+
y
′
(
4
−
π
)
=
−
2
25%
B
y
′
(
4
π
)
−
y
′
(
4
−
π
)
=
π
−
2
25%
C
y
(
4
π
)
−
y
(
−
4
π
)
=
2
50%
D
y
(
4
π
)
+
y
(
2
−
π
)
=
2
π
2
+
2
0%
Solution:
d
x
d
y
+
y
(
tan
x
)
=
2
x
+
x
2
tan
x
I
.
F
=
e
∫
t
a
n
x
d
x
=
e
l
n
.
s
e
c
x
=
sec
x
∴
y
.
sec
x
=
∫
(
2
x
+
x
2
tan
x
)
sec
x
.
d
x
=
∫
2
x
sec
x
d
x
+
∫
x
2
(
sec
x
.
tan
x
)
d
x
y
sec
x
=
x
2
sec
x
+
λ
⇒
y
=
x
2
+
λ
cos
x
y
(
0
)
=
0
+
λ
=
1
⇒
λ
=
1
y
=
x
2
+
cos
x
y
(
4
π
)
=
16
π
2
+
2
1
y
(
−
4
π
)
=
16
π
2
+
2
1
y
′
(
x
)
=
2
x
−
sin
x
y
′
(
4
π
)
=
2
π
−
2
1
y
′
(
4
−
π
)
=
2
−
π
+
2
1
y
′
(
4
π
)
−
y
′
(
4
−
π
)
=
π
−
2