Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be solution of the differential equation log e((d y/d x))=3 x+4 y, with y(0)=0 if y(-(2/3) log e 2)=α log e 2, then the value of α is equal to:
Q. Let
y
=
y
(
x
)
be solution of the differential equation
lo
g
e
(
d
x
d
y
)
=
3
x
+
4
y
, with
y
(
0
)
=
0
if
y
(
−
3
2
lo
g
e
2
)
=
α
lo
g
e
2
, then the value of
α
is equal to:
2816
176
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
−
4
1
B
4
1
C
2
D
−
2
1
Solution:
d
x
d
y
=
e
3
x
⋅
e
4
y
⇒
∫
e
−
4
y
d
y
=
∫
e
3
x
d
x
−
4
e
−
4
y
=
e
3
x
3
+
C
⇒
−
4
1
−
3
1
=
C
⇒
C
=
−
12
7
−
4
e
−
4
y
=
3
e
3
x
−
12
7
⇒
e
−
4
y
=
−
3
4
e
3
x
−
7
e
4
y
=
7
−
4
e
3
x
3
⇒
4
y
=
ln
(
7
−
4
e
3
x
3
)
4
y
=
ln
(
6
3
)
when
x
=
−
3
2
ln
2
y
=
4
1
ln
(
2
1
)
=
−
4
1
ln
2