Q.
Let y=y(x) be a solution of the differential equation,
1−x2​dxdy​+1−y2​=0,∣x∣<1.
If y(21​)=23​​, then y(2​−1​) is equal to :
dxdy​=−1−x2​1−y2​​ so, 1−y2​dy​+1−x2​dx​=0
Integrating, sin−1x+sin−1y=c
so, 6π​+3π​=c
Hence, sin−1x+sin−1y=2π​
Put x=−2​1​,sin−1y=43π​ (Not possible)