Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=√ log 2 3 ⋅ log 2 12 ⋅ log 2 48 ⋅ log 2 192+16- log 2 12 ⋅ log 2 48+10. Find y ∈ N.
Q. Let
y
=
lo
g
2
3
⋅
lo
g
2
12
⋅
lo
g
2
48
⋅
lo
g
2
192
+
16
−
lo
g
2
12
⋅
lo
g
2
48
+
10
. Find
y
∈
N
.
131
109
Continuity and Differentiability
Report Error
Answer:
6
Solution:
y
=
lo
g
2
3
⋅
(
2
+
lo
g
2
3
)
⋅
(
4
+
lo
g
2
3
)
⋅
(
6
+
lo
g
2
3
)
+
16
−
(
2
+
lo
g
2
3
)
⋅
(
4
+
lo
g
2
3
)
+
10
let
lo
g
2
3
=
x
y
=
x
(
2
+
x
)
(
4
+
x
)
(
6
+
x
)
+
16
−
(
2
+
x
)
⋅
(
4
+
x
)
+
10
=
(
x
2
+
6
x
)
(
x
2
+
6
x
+
8
)
+
16
−
(
x
2
+
6
x
+
8
)
+
10
let
x
2
+
6
x
=
t
y
=
t
(
t
+
8
)
+
16
−
(
t
+
8
)
+
10
=
t
2
+
8
t
+
16
−
(
t
−
2
)
=
t
+
4
−
t
+
2
=
6
hence
y
=
6