Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=f(x) be the solution of the differential equation (d y/d x)=-2x(y - 1) with f(0)=1, then undersetx arrow ∈ ftyl i mf(x) is equal to
Q. Let
y
=
f
(
x
)
be the solution of the differential equation
d
x
d
y
=
−
2
x
(
y
−
1
)
with
f
(
0
)
=
1
,
then
x
→∈
f
t
y
l
im
f
(
x
)
is equal to
2562
208
NTA Abhyas
NTA Abhyas 2020
Differential Equations
Report Error
A
2
1
11%
B
0
58%
C
e
21%
D
1
11%
Solution:
d
x
d
y
=
−
2
x
(
y
−
1
)
d
x
d
y
+
2
x
y
=
2
x
I.
F
.
=
e
∫
2
x
d
x
=
e
x
2
y
⋅
e
x
2
=
∫
e
x
2
2
x
d
x
y
⋅
e
x
2
=
e
x
2
+
C
∵
y
(
0
)
=
1
⇒
1
=
1
+
C
⇒
C
=
0
Hence, the solution is
y
e
x
2
=
e
x
2
⇒
y
=
1
=
f
(
x
)
x
→∈
f
t
y
l
im
f
(
x
)
=
1