1740
221
IIT JEEIIT JEE 1981Continuity and Differentiability
Report Error
Solution:
Since, y=exsinx3+(tanx)x, then y=u+v, where u=exsinx3 and v=(tanx)x ⇒dxdy=(dxdu+dxdv)....(i)
Here, u=exsinx3 and logv=xlog(tanx)
On differentiating both sides w.r.t. x, we get dxdu=exsinx3⋅(3x3cosx3+sinx3)...(ii)
and v1⋅dxdv=tanxx⋅sec2x+log(tanx) dxdv=(tanx)x[2x⋅cosec(2x)+log(tanx)]… (iii)
From Eqs. (i), (ii) and (iii), wet get dxdy=exsinx3(3x3⋅cosx3+sinx3)+(tanx)x [2xcosec2x+log(tanx)]