Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let X= x ∈ N: 1 ≤ x ≤ 17 and Y= a x+b: x ∈ X and a, b ∈ R, a>0 . If mean and variance of elements of Y are 17 and 216 respectively then a + b is equal to
Q. Let
X
=
{
x
∈
N
:
1
≤
x
≤
17
}
and
Y
=
{
a
x
+
b
:
x
∈
X
and
a
,
b
∈
R
,
a
>
0
}
.
If mean and variance of elements of
Y
are 17 and 216 respectively then
a
+
b
is equal to
3490
226
JEE Main
JEE Main 2020
Statistics
Report Error
A
-7
25%
B
7
35%
C
9
25%
D
-27
15%
Solution:
σ
2
=
variance
μ
=
mean
σ
2
=
n
i
=
1
∑
n
(
x
i
−
μ
)
2
μ
=
17
⇒
17
x
=
1
∑
17
(
a
x
+
b
)
=
17
⇒
9
a
+
b
=
17
…
(i)
σ
2
=
216
⇒
17
x
=
1
∑
17
(
a
x
+
b
−
17
)
2
=
216
⇒
17
x
=
1
∑
17
a
2
(
x
−
9
)
2
=
216
⇒
a
2
81
−
18
×
9
a
2
+
a
2
3
×
(
35
)
=
216
⇒
a
2
=
24
216
=
9
⇒
a
=
3
(
a
>
0
)
⇒
From
(
1
)
,
b
=
−
10
So,
a
+
b
=
−
7