Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Xn= z=x+i y:|z|2 ≤ (1/n) for all integers n ≥ 1. Then, overset∞ undersetn=1∩ is
Q. Let
X
n
=
{
z
=
x
+
i
y
:
∣
z
∣
2
≤
n
1
}
for all integers
n
≥
1
. Then,
n
=
1
∩
∞
is
2377
192
WBJEE
WBJEE 2014
Report Error
A
A singleton set
B
Not a finite set
C
An empty set
D
A finite set with more than one elements
Solution:
Given,
X
n
=
{
z
=
x
+
iY
:
∣
z
∣
2
≤
n
1
}
=
{
x
2
+
y
2
≤
n
1
}
∴
X
1
=
{
x
2
+
y
2
≤
1
}
X
2
=
{
x
2
+
y
2
≤
2
1
}
X
3
=
{
x
2
+
y
2
≤
3
1
}
X
∞
=
{
x
2
+
y
≤
0
}
∴
n
=
1
∩
∞
X
n
=
X
1
∩
X
2
∩
X
3
∩
…
∩
X
∞
=
{
x
2
+
y
2
=
0
}
Hence,
n
=
1
∩
∞
X
n
is a singleton set.