Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let [x ] denote the greatest integer less than or equal to x. Then :- displaystyle limx→0 ( tan(π sin2 x)+(|x|- sin(x[x]))2/x2)
Q. Let [
x
] denote the greatest integer less than or equal to
x
. Then :-
x
→
0
lim
x
2
tan
(
π
sin
2
x
)
+
(
∣
x
∣
−
sin
(
x
[
x
]
)
)
2
5545
177
JEE Main
JEE Main 2019
Limits and Derivatives
Report Error
A
equals
π
15%
B
equals
0
9%
C
equals
π
+
1
27%
D
does not exist
49%
Solution:
R
.
H
.
L
=
lim
x
→
0
+
x
2
t
a
n
(
π
s
i
n
2
x
)
+
(
∣
x
∣
−
s
i
n
(
x
[
x
]
)
)
2
(as
x
→
0
+
⇒
[x] = 0)
=
lim
x
→
0
+
x
2
t
a
n
(
π
s
i
n
2
x
)
+
x
2
=
lim
x
→
0
+
(
π
s
i
n
2
x
)
t
a
n
(
π
s
i
n
2
x
)
+
1
=
π
+
1
L
.
H
.
L
=
lim
x
→
0
−
x
2
t
a
n
(
π
s
i
n
2
x
)
+
(
−
x
+
s
i
n
x
)
2
(as x
→
0-
⇒
[x] = -1)
lim
x
→
0
+
π
s
i
n
2
x
t
a
n
(
π
s
i
n
2
x
)
.
x
2
π
s
i
n
2
x
+
(
−
1
+
x
s
i
n
x
)
2
⇒
π
R
.
H
.
L
.
=
L
.
H
.
L
.