Q.
Let [x] be the greatest integer less than or equals to x. Then, at which of the following point(s) the function f(x)=xcos(π(x+[x])) is discontinuous?
f(x)=xcos(π(x+[x]))
at x=1x→1+limf(x)=h→0+lim(1+h)cos(π(1+h+[1+h])) =h→0lim(1+h)cos(π(2+h)) =h→0lim(1+h)cos2h=1
Similarly x→1−limf(x)=−1 ⇒ discontinuous at X=1
at x=−1x→−1limf(x)=h→0limf(−1+h) =h→0lim(−1+h)cos(π(−1+h+[−1+h]) =h→0lim(−1+h)cos(π(−2+h)) =h→0lim(−1+h)cos(2π−πh)=−1 x→−1−limf(x)=h→0limf(−1−h)=1 ⇒ discontinuous at x=−1
at x=0 t→0−limf(x)=0 and f(0)=0 ⇒ continuous at x=0
at x=2 x→2+limf(x)=h→0limf(2+h)=h→0lim(2+h)cos(π(2+h+[2+h])) =h→0lim(2+h)cos(4π+πh)=2 x→2−limf(x)=−2
discontinuous at x=2