Q.
Let x and y be two 2-digit numbers such that y is obtained by reversing the digits of x. Suppose they also satisfy x2−y2=m2 for some positive integer m.
The value of x+y+m is
We have, x and y be two-digit numbers.
Let x=10a+b, where b is units place and a is ten’s place. ∴y=10b+a x2−y2=m2 ∵(10a+b)2−(10b+a)2=m2 ⇒(10a+b+10b+a) (10a+b−10b−a)=m2 ⇒11(a+5)⋅9(a−b)=m2 ⇒99(a2−b2)=m2 ⇒32x11(a2−b2)=m2
Now, 32×11(a2−b2) is a perfect square. ∵a2−b2=11 ⇒(a+b)(a−b)=11×1 a+b=11 and a−b=11
On solving, we get a=6,b=5 ∵ Number x=60+5=65 y=56
and m2=(65)2−(56)2=(65+56)(65−56) ⇒m2=121×9 ⇒m2=33 ∵x+y+m=65+56+33=154