Q.
Let a2x2+b2y2=1(a>b) be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, ϕ(t)=125+t−t2, then a2+b2 is equal to :
a2x2+b2y2=1(a>b);a2b2=10 ⇒b2=5a…(i)
Now, ϕ(t)=125+t−t2=128−(t−21)2 ϕ(t)max=128=32=e ⇒e2=1−a2b2=94… (ii) ⇒a2=81( from (i)&(ii))
So, a2+b2=81+45=126