Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If X= 1,2,3, ldots, 10 and A= 1,2,3,4,5 . Then, the number of subsets B of X such that A-B= 4 is
Q. If
X
=
{
1
,
2
,
3
,
…
,
10
}
and
A
=
{
1
,
2
,
3
,
4
,
5
}
. Then, the number of subsets
B
of
X
such that
A
−
B
=
{
4
}
is
3013
192
KEAM
KEAM 2013
Report Error
A
2
5
B
2
4
C
2
5
−
1
D
1
E
2
4
−
1
Solution:
Given,
X
=
{
1
,
2
,
3
,
…
,
10
}
and
A
=
{
1
,
2
,
3
,
4
,
5
}
Now,
A
−
B
=
{
4
}
⇒
B
=
A
−
{
4
}
=
{
1
,
2
,
3
,
4
,
5
}
−
{
4
}
=
{
1
,
2
,
3
,
5
}
∴
X
−
{
4
}
−
B
=
{
1
,
2
,
3
,
…
,
10
}
−
{
4
}
−
{
1
,
2
,
3
,
5
}
=
{
6
,
7
,
8
,
9
,
10
}
∴
Number of subsets
B
of
X
i.e.,
{
6
,
7
,
8
,
9
,
10
}
=
2
5