Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let vecb= hati+ hatj+λ hatk, λ ∈ R. If veca is a vector such that vec a × vec b =13 hat i - hat j -4 hat k and vec a ⋅ vec b +21=0, then ( vec b - vec a ) ⋅( hat k - hat j )+( vec b + vec a ) ⋅( hat i - hat k ) is equal to
Q. Let
b
=
i
^
+
j
^
+
λ
k
^
,
λ
∈
R
. If
a
is a vector such that
a
×
b
=
13
i
^
−
j
^
−
4
k
^
and
a
⋅
b
+
21
=
0
, then
(
b
−
a
)
⋅
(
k
^
−
j
^
)
+
(
b
+
a
)
⋅
(
i
^
−
k
^
)
is equal to
3574
172
JEE Main
JEE Main 2022
Vector Algebra
Report Error
Answer:
14
Solution:
(
a
×
b
)
⋅
b
=
0
⇒
13
−
1
−
4
λ
=
0
⇒
λ
=
3
⇒
b
=
i
^
+
j
^
+
3
k
^
⇒
a
×
b
=
13
i
^
−
j
^
−
4
k
^
⇒
(
a
×
b
)
×
b
=
(
13
i
^
−
j
^
−
4
k
^
)
×
(
i
^
+
j
^
+
3
k
^
)
⇒
−
21
b
−
11
a
=
i
^
−
43
j
^
+
14
k
^
⇒
a
=
−
2
i
^
+
2
j
^
−
7
k
^
Now
(
b
−
a
)
⋅
(
k
^
−
j
^
)
+
(
b
+
a
)
⋅
(
i
^
−
k
^
)
=
14