∣a∣=1,∣b∣=1,∣a+b∣=3, c=a+2b+3(a×b) ∵∣a+b∣2=3 ⇒(a+b)⋅(a+b)=3 ⇒∣a∣2+∣b∣2+2a⋅b=3 ⇒ab=21 ⇒1+1+2cosθ=3 ⇒cosθ=21 ⇒θ=60∘= Angle between a and b ⇒a×b=∣a∣∣b∣sinθ⋅x^;x^= unit vector
Vector perpendicular to the plane containing aˉ and b⇒a×b=23x^ ∴∣c∣2=(a+2b+233x^)(aˉ+2b+233x^)=1+2×(2a⋅b)+4+(49×3) (∵n^⋅a=x^⋅b=0) =1+4(21)+4+427=455 ⇒∣c∣=255 ⇒2∣c∣=55