Given equation is w+(w×u)=v(1)
Taking cross-product with u, we get u×[w+(w×u)]=u×v ⇒u×w+u×(w×u)=u×v ⇒u×w+(u⋅u)w−(u⋅w)u=u×v ⇒u×w+w−(u⋅w)u=u×v(2)
Taking scalar product of (1) with u we get u⋅w+u⋅(w×u)=u⋅v ⇒u⋅w=u⋅v [∵u⋅(w×u)=0](3)
Taking scalar product of (1) with v we get v⋅w+v⋅(w×u)=v⋅v ⇒v⋅w+[vwu]=1 ⇒(u×v)⋅w=1−v⋅w(4)
Taking scalar product of ( 2 ) with w we get (u×w)⋅w+w⋅w−(u⋅w)(u⋅w)=(u×v)⋅w ⇒0+∣w∣2−(u⋅w)2=(u×v)⋅w(5) ⇒(u×v)⋅w=∣w∣2−(u⋅w)2 .
Taking scalar product of (1) with w we get w⋅w+(w×u)⋅w=v⋅w ⇒∣w∣2=v⋅w ⇒∣w∣2=1−(u×v)⋅w[ using (4)](6)
From (5) we get (u×v)⋅w=∣w∣2−(u⋅w)2 =1−(u×v)⋅w−(u⋅w)2 ⇒2(u×v)⋅w=1−(u⋅v)2[Using (3)]
Thus, ∣(u×v)⋅w∣=21∣∣1−(u⋅v)2∣∣ ≤21[∴(u⋅v)2≥0]