Q.
Let three positive numbers a,b,c are in geometric progression, such that a,b+8,c are in arithmetic progression and a,b+8,c+64 are in geometric progression. If the arithmetic mean of a,b,c is k , then 133k is equal to
Here, b2=ac,2(b+8)=a+c, (b+8)2=a(c+64) ⇒b2+64+16b=ac+64a ⇒b+4=4a⇒b=4a−4 2(b+8)=a+c⇒2(4a+4)=a+c ⇒c=7a+8 b2=ac⇒(4a−4)2=a(7a+8) ⇒16a2+16−32a=7a2+8a ⇒9a2−40a+16=0 ⇒(9a−4)(a−4)=0⇒a=94,4
But for a=94⇒b<0
So, a=4⇒b=12 and c=36 ⇒k=3a+b+c=352 ⇒133k=133×352=4