Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let θ ∈(0, (π/4)) and t1=( tan θ) tan θ, t2=( tan θ) cot θ, t3= ( cot θ) tan θ and t4=( cot θ) cot θ, then
Q. Let
θ
∈
(
0
,
4
π
)
and
t
1
=
(
tan
θ
)
t
a
n
θ
,
t
2
=
(
tan
θ
)
c
o
t
θ
,
t
3
=
(
cot
θ
)
t
a
n
θ
and
t
4
=
(
cot
θ
)
c
o
t
θ
, then
2420
247
JEE Advanced
JEE Advanced 2006
Report Error
A
t
1
>
t
2
>
t
3
>
t
4
B
t
4
>
t
3
>
t
1
>
t
2
C
t
3
>
t
1
>
t
2
>
t
4
D
t
2
>
t
3
>
t
1
>
t
4
Solution:
We have
θ
∈
(
0
,
4
π
)
t
1
=
(
tan
θ
)
t
a
n
θ
;
t
2
=
(
tan
θ
)
c
o
t
θ
;
t
3
=
(
cot
θ
)
t
a
n
θ
t
4
=
(
cot
θ
)
c
o
t
θ
- For
θ
∈
(
0
,
4
π
)
:
tan
θ
∈
(
0
,
1
)
and
cot
θ
(
1
,
∞
)
This implies that
t
4
=
(
>
1
)
>
t
,
t
3
=
(
>
1
)
<
1
,
t
2
=
(
<
1
)
>
1
,
t
1
=
(
<
1
)
<
1
Therefore,
t
4
>
t
3
>
t
1
>
t
2