Q.
Let the unit vectors a and b be perpendicular to each other and the unit vector c be inclined at an angle θ to both a and b , If c=xa+yb+z(a×b) , then
We have c=αc+βb+γ(a×b) ⇒c⋅a=α and c⋅b=β ⇒α=β=cosθ
Now c⋅c=∣c∣2 ⇒(αa+βb+γ(a×b)) (αa+βb+γ(a×b))=∣c∣2 ⇒2α2+γ2∣∣a×b∣∣2=1 ⇒2α2+β2[∣a∣2∣∣b∣∣2−(a⋅b)2]=1 ⇒α2+γ2[1−0]=1[∵a⊥b∴a⋅b=0] ⇒2α2+γ2=1 ⇒γ2=1−2x2 =1−2cos2θ−cos2θ