Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the solution curve y=f(x) of the differential equation (d y/d x)+(x y/x2-1)=(x4+2 x/√1-x2), x ∈(-1,1) pass through the origin. Then ∫ limits-(√3/2)(√3/2) f(x) d x is equal to
Q. Let the solution curve
y
=
f
(
x
)
of the differential equation
d
x
d
y
+
x
2
−
1
x
y
=
1
−
x
2
x
4
+
2
x
,
x
∈
(
−
1
,
1
)
pass through the origin. Then
−
2
3
∫
2
3
f
(
x
)
d
x
is equal to
842
1
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
3
π
−
4
1
17%
B
3
π
−
4
3
33%
C
6
π
−
4
3
50%
D
6
π
−
2
3
0%
Solution:
d
x
d
y
+
x
2
−
1
x
y
=
1
−
x
2
x
4
+
2
x
I.F
=
e
∫
x
2
−
1
x
d
x
I.F
=
1
−
x
2
Solution of D.E.
y
⋅
1
−
x
2
=
∫
1
−
x
2
x
4
+
2
x
⋅
1
−
x
2
d
x
y
⋅
1
−
x
2
=
∫
(
x
4
+
2
x
)
d
x
y
⋅
1
−
x
2
=
5
x
5
+
x
2
+
C
At
x
=
0
,
y
=
0
,
get
C
=
0
y
=
5
1
−
x
2
x
5
+
1
−
x
2
x
2
Now,
2
−
3
∫
2
3
f
(
x
)
d
x
=
2
−
3
∫
2
3
5
1
−
x
2
x
5
d
x
+
2
−
3
∫
2
3
1
−
x
2
x
2
d
x
2
−
3
∫
2
3
f
(
x
)
d
x
=
0
+
2
0
∫
2
3
1
−
x
2
x
2
d
x
2
−
3
∫
2
3
f
(
x
)
d
x
=
3
π
−
4
3