Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the solution curve of the differential equation x (d y/d x)-y=√y2+16 x2, y(1)=3 be y=y(x). Then y (2) is equal to:
Q. Let the solution curve of the differential equation
x
d
x
d
y
−
y
=
y
2
+
16
x
2
,
y
(
1
)
=
3
be
y
=
y
(
x
)
. Then
y
(
2
)
is equal to:
1511
190
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
15
67%
B
11
17%
C
13
0%
D
17
17%
Solution:
y
=
vx
⇒
d
x
d
y
=
v
+
x
d
x
d
v
⇒
x
d
x
d
v
=
v
2
+
16
⇒
∫
v
2
+
16
d
v
=
∫
x
d
x
⇒
ln
∣
∣
v
+
v
2
+
16
∣
∣
=
ln
x
+
ln
C
⇒
y
+
y
2
+
16
x
2
=
C
x
2
As
y
(
1
)
=
3
⇒
C
=
8
⇒
y
(
2
)
=
15