Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the population of rabbits surviving at a time t be governed by the differential equation dp(t)/dt = (1/2) p(t) - 200. If p(0) = 100, then p(t) equals
Q. Let the population of rabbits surviving at a time t be governed by the differential equation
d
p
(
t
)
/
d
t
=
(
1/2
)
p
(
t
)
−
200.
If
p
(
0
)
=
100
,
then p(t) equals
2101
247
Differential Equations
Report Error
A
600
−
500
e
t
/2
12%
B
400
−
300
e
−
t
/2
44%
C
400
−
300
e
t
/2
44%
D
300
−
200
e
−
t
/2.
0%
Solution:
Since
d
t
d
p
−
2
1
p
(
t
)
=
−
200
is lmear in
y
∴
I
.
F
.
=
e
∫
2
1
d
t
=
e
−
2
t
∴
role is
p
⋅
e
2
−
t
=
∫
−
200
⋅
(
e
−
2
t
)
d
t
+
C
=
−
200
⋅
−
1/2
e
−
t
/2
+
C
=
400
e
−
t
/2
+
C
Since
p
(
0
)
=
100
∴
100
e
0
=
400
e
0
+
C
⇒
100
=
400
+
C
⇒
C
=
−
300
∴
p
(
t
)
=
400
−
300
e
t
/2