Q.
Let the general term of a series be (2k−1)(2k)(2k+1),k=1,2,3...,n. If the sum of first. n terms is 24090, then n is equal to
2247
191
J & K CETJ & K CET 2015Sequences and Series
Report Error
Solution:
Given, general term of a series Tk=(2k−1)(2k)(2k+1). ⇒Tk={(2k)2−(1)2}(2k) ⇒Tk=(4k2−1)(2k) ⇒Tk=8k3−2k ⇒Tn=8n3−2n Then, Sn=ΣTn =Σ(8n3−2Σn) ⇒Sn=8Σn3−2Σn =8(2n(n+1))2−22n(n+1) =84n2(n+1)2−n(n+1)2n2(n+1)2−n(n+1) But given, Sn=24090 ∴2n2(n+1)2−n(n+1)=24090 ⇒2n2(n2+2n+1)−n(n+1)=24090 ⇒2(n4+2n3+n2)−n2−n=24090 ⇒2n4+4n3+2n2−n2−n=24090 ⇒2n4+4n3+n2−n=24090 ⇒n(2n3+4n2+n−1)=24090
Now, n=10 satisfy this equation. So, n=10