Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the domain of the function f(x)= log 4( log 5( log 3(18 x-x2-77))) be (a, b) Then the value of the integral ∫ limitsab ( sin 3 x/( sin 3 x+ sin 3(a+ b- x))) d x is equal to.
Q. Let the domain of the function
f
(
x
)
=
lo
g
4
(
lo
g
5
(
lo
g
3
(
18
x
−
x
2
−
77
)
)
)
be
(
a
,
b
)
Then the value of the integral
a
∫
b
(
s
i
n
3
x
+
s
i
n
3
(
a
+
b
−
x
)
)
s
i
n
3
x
d
x
is equal to________.
357
144
JEE Main
JEE Main 2021
Integrals
Report Error
Answer:
1
Solution:
For domain
lo
g
5
(
lo
g
3
(
18
x
−
x
2
−
77
)
)
>
0
lo
g
3
(
18
x
−
x
2
−
77
)
>
1
18
x
−
x
2
−
77
>
3
x
2
−
18
x
+
80
<
0
x
∈
(
8
,
10
)
⇒
a
=
8
and
b
=
10
I
=
a
∫
b
b
s
i
n
3
x
+
s
i
n
3
(
a
+
b
−
x
)
s
i
n
3
x
d
x
I
=
a
∫
b
s
i
n
3
x
+
s
i
n
3
(
a
+
b
−
x
)
s
i
n
3
(
a
+
b
−
x
)
2
I
=
(
b
−
a
)
⇒
I
=
2
b
−
a
(
∵
a
=
8
and
b
=
10
)
I
=
2
10
−
8
=
1