Q.
Let the complex numbers z1,z2 and z3 be the vertices of an equilateral triangle. Let z0 be the circumcentre of the triangle. Then, prove that z12+z22+z32=3z02
Since, z1,z2,z3 are the vertices of an equilateral triangle. ∴ Circumcentre (z0)= Centroid (3z1+z2+z3).....(i)
Also, for equilateral triangle z12+z22+z32=z1z2+z2z3+z3z1....(ii)
On squaring Eq. (i), we get 9z02=z12+z22+z32+2(z1+z2+z2z3+z3z1) ⇒9z02=z12+z32+z32+2(z1z2+z2z3+z3z1) [from Eq. (ii)] ⇒3z02=z12+z22+z32