Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), a b>0 be P(1,1). If the line AP intersects the line BC at the point Q ( k 1, k 2), then k 1+ k 2 is equal to :
Q. Let the circumcentre of a triangle with vertices
A
(
a
,
3
)
,
B
(
b
,
5
)
and
C
(
a
,
b
)
,
ab
>
0
be
P
(
1
,
1
)
. If the line AP intersects the line
BC
at the point
Q
(
k
1
,
k
2
)
, then
k
1
+
k
2
is equal to :
644
0
JEE Main
JEE Main 2022
Straight Lines
Report Error
A
2
B
7
4
C
7
2
D
4
Solution:
m
P
D
=
0
D
(
2
a
+
a
,
2
b
+
3
)
D
(
a
,
2
b
+
3
)
m
P
D
=
0
2
b
+
3
−
1
=
0
b
+
3
−
2
=
0
b
=
−
1
E
(
2
b
+
a
,
2
5
+
b
)
=
(
2
a
f
,
2
)
m
CB
⋅
m
EP
=
−
1
(
b
−
a
5
−
b
)
=
(
a
−
1
2
−
1
)
=
−
1
(
−
1
−
a
6
)
=
(
a
−
3
2
)
=
−
1
12
=
(
1
+
a
)
(
a
−
3
)
12
=
a
2
−
3
a
+
a
−
3
⇒
a
2
−
2
a
−
15
=
0
(
a
−
5
)
(
a
+
3
)
=
0
a
=
5
or
a
=
−
3
Given
ab
>
0
a
(
−
1
)
>
0
−
a
>
0
a
<
0
a
=
−
3
Accept
AP line A
(
−
3
,
3
)
P
(
1
,
1
)
y
−
1
=
(
−
3
−
1
3
−
1
)
(
x
−
1
)
−
2
y
+
2
=
x
−
1
⇒
x
+
2
y
=
3
Appling
......
(1)
Line
BCB
(
−
1
,
5
)
C
(
−
3
,
−
1
)
(
y
−
5
)
=
2
6
(
x
+
1
)
y
−
5
=
3
x
+
3
y
=
3
x
+
8
....(2)
Solving (1) & (2)
x
+
2
(
3
x
+
8
)
=
3
⇒
7
x
+
16
=
3
7
x
=
−
13
x
=
−
7
13
y
=
3
(
−
7
13
)
+
8
=
7
−
39
+
56
y
=
7
17
x
+
y
=
7
−
13
+
17
=
7
4