Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S(x)=1+x-x2-x3+x4+x5-x6-x7+ ldots ldots; where 0< x< 1 If S(x)=(√2+1/2) then the value of x equals
Q. Let
S
(
x
)
=
1
+
x
−
x
2
−
x
3
+
x
4
+
x
5
−
x
6
−
x
7
+
……
; where
0
<
x
<
1
If
S
(
x
)
=
2
2
+
1
then the value of
x
equals
61
135
Sequences and Series
Report Error
A
2
−
2
B
2
−
1
C
2
1
D
(
1
−
2
1
)
Solution:
2
2
+
1
=
(
1
−
x
2
+
x
4
−
x
6
+
x
8
……
)
+
(
x
−
x
3
+
x
5
−
x
7
……
..
)
2
2
+
1
=
1
+
x
2
1
+
1
+
x
2
x
=
1
+
x
2
1
+
x
or
(
2
+
1
)
x
2
+
(
2
+
1
)
=
2
+
2
x
(
2
+
1
)
x
2
−
2
x
+
(
2
−
1
)
=
0
(divide by
2
+
1
)
x
2
−
2
(
2
−
1
)
x
+
(
2
−
1
)
2
=
0
[
x
−
(
2
−
1
)
]
2
=
0
⇒
x
=
2
−
1