Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sr denotes the sum of the first r terms of an A.P., then (S3r-Sr-1/S2r-S2r-1) is equal to
Q. Let
S
r
denotes the sum of the first r terms of an A.P., then
S
2
r
−
S
2
r
−
1
S
3
r
−
S
r
−
1
is equal to
2008
210
Sequences and Series
Report Error
A
2r - 1
18%
B
2r + 1
67%
C
4r + 1
9%
D
2r + 2
5%
Solution:
S
2
r
−
S
2
r
−
1
S
3
r
−
S
r
−
1
T
2
r
2
3
r
[
2
a
+
(
3
r
−
1
)
d
]
−
2
r
−
1
[
2
a
+
(
r
−
2
)
d
]
=
a
+
(
2
r
−
1
)
d
3
a
r
+
2
3
r
(
3
r
−
1
)
d
−
(
r
−
1
)
a
−
2
(
r
−
1
)
(
r
−
2
)
d
=
a
+
(
2
r
−
1
)
d
2
a
r
+
a
+
2
d
[
9
r
2
−
3
r
−
r
2
+
3
r
−
2
]
a
+
(
2
r
−
1
)
d
a
(
2
r
+
1
)
+
2
d
(
8
r
2
−
2
)
=
a
+
(
2
r
−
1
)
d
a
(
2
r
+
1
)
+
d
(
4
r
2
−
1
)
=
a
+
(
2
r
−
1
)
d
(
2
r
+
1
)
+
[
a
+
(
2
r
−
1
)
d
]
=
2
r
+
1