Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn=(n/(n+1)(n+2))+(n/(n+2)(n+4))+(n/(n+3)(n+6))+ ldots ldots ldots+(1/6 n) then undersetn arrow ∞ textLim Sn has the value equal to
Q. Let
S
n
=
(
n
+
1
)
(
n
+
2
)
n
+
(
n
+
2
)
(
n
+
4
)
n
+
(
n
+
3
)
(
n
+
6
)
n
+
………
+
6
n
1
then
n
→
∞
Lim
S
n
has the value equal to
442
104
Integrals
Report Error
A
ln
2
3
B
ln
2
9
C
2
ln
2
3
D
2
1
ln
2
3
Solution:
T
r
=
(
n
+
r
)
(
n
+
2
r
)
n
=
n
(
1
+
n
r
)
(
1
+
n
2
r
)
1
S
=
n
→
∞
Lim
r
=
1
∑
n
(
1
+
n
r
)
(
1
+
n
2
r
)
=
0
∫
1
(
1
+
x
)
(
1
+
2
x
)
d
x
=
0
∫
1
(
2
+
2
x
)
(
1
+
2
x
)
2
d
x
=
2
0
∫
1
(
2
+
2
x
)
(
1
+
2
x
)
(
2
+
2
x
)
−
(
1
+
2
x
)
d
x
=
2
[
0
∫
1
(
1
+
2
x
1
−
2
(
1
+
x
)
1
)
d
x
]
=
2
⋅
2
1
ln
(
1
+
2
x
)
∣
∣
0
1
−
ln
(
1
+
x
)
∣
0
1
=
ln
3
−
ln
2
=
ln
2
3