Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sk, k =1,2, ldots, 100, denote the sum of the infinite geometric series whose first term is ( k -1/ k !) and the common ratio is (1/ k ) . Then the value of (1002/100 !)+ displaystyle∑ k =1100|( k 2-3 k +1) S k | is
Q. Let
S
k
,
k
=
1
,
2
,
…
,
100
, denote the sum of the infinite geometric series whose first term is
k
!
k
−
1
and the common ratio is
k
1
.
Then the value of
100
!
10
0
2
+
k
=
1
∑
100
∣
∣
(
k
2
−
3
k
+
1
)
S
k
∣
∣
is _____
2779
202
JEE Advanced
JEE Advanced 2010
Report Error
Answer:
3
Solution:
S
k
=
1
−
k
1
k
!
k
−
1
=
(
k
−
1
)!
1
=
k
=
2
∑
100
∣
∣
(
k
2
−
3
k
+
1
)
(
k
−
1
)!
1
∣
∣
=
k
=
2
∑
100
∣
∣
(
k
−
1
)!
(
k
−
1
)
2
−
k
∣
∣
=
∑
∣
∣
(
k
−
2
)!
k
−
1
−
(
k
−
1
)!
k
∣
∣
=
∣
∣
1
!
2
−
2
!
3
+
∣
∣
2
!
3
−
3
!
4
∣
+
⋯
=
1
!
2
−
0
!
1
+
1
!
2
−
2
!
3
+
2
!
3
−
3
!
4
+
⋯
+
98
!
99
−
99
!
100
=
3
−
99
!
100