Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S be the set of real values of parameter λ for which the function f(x)=2 x3-3(2+λ) x2+12 λ x has exactly one local maxima and exactly one local minima. Then the subset of S is -
Q. Let
S
be the set of real values of parameter
λ
for which the function
f
(
x
)
=
2
x
3
−
3
(
2
+
λ
)
x
2
+
12
λ
x
has exactly one local maxima and exactly one local minima. Then the subset of
S
is -
1307
156
Application of Derivatives
Report Error
A
(
5
,
∞
)
B
(
−
4
,
4
)
C
(
3
,
8
)
D
(
−
∞
,
−
1
)
Solution:
f
(
x
)
=
2
x
3
−
3
(
2
+
λ
)
x
2
+
12
λ
x
f
′
(
x
)
=
6
x
2
−
6
(
2
+
λ
)
x
+
12
λ
D
>
0
36
(
2
+
λ
)
2
−
24.12
⋅
λ
>
0
⇒
(
λ
−
2
)
2
>
0
⇒
λ
=
2
so required set is option
(
A
,
C
,
D
)