We know that (1+x)n=nC0+xnC1+x2nC2+…+xnnCn
On integrating both sides from 0 to 2 , we get [n+1(1+x)n+1]02 =[xnC0+2x2nC1+3x3nC2+…+n+1xn+1nCn]02 ⇒n+1(3)n+1−n+11=2nC0+222nC1+323nC2+…+n+12n+1nCn−0 ⇒12nC0+222nC1+323nC2+…+n+12n+1nCn =n+13n+1−1