Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S = 1, 2, 3, 4, 5 and let A = S × S. Define the relation R on A as follows: (a, b) R (c, d) iff ad = cb. Then, R is
Q. Let
S
=
{
1
,
2
,
3
,
4
,
5
}
and let
A
=
S
×
S
. Define the relation
R
on
A
as follows :
(
a
,
b
)
R
(
c
,
d
)
iff
a
d
=
c
b
. Then,
R
is
8315
219
Relations and Functions - Part 2
Report Error
A
Reflexive only
18%
B
Symmetric only
27%
C
Transitive only
9%
D
Equivalence relation
45%
Solution:
Given that
S
=
{
1
,
2
,
3
,
4
,
5
}
and
A
=
S
×
S
(
i
)
Reflexive :
ab
=
ba
⇒
(
a
,
b
)
R
(
a
,
b
)
R
(
a
,
b
)
∀
a
,
b
∈
S
.
(
ii
)
Symmetric :
(
a
,
b
)
R
(
c
,
d
)
⇒
a
d
=
c
b
⇒
c
b
=
a
d
⇒
(
c
,
d
)
R
(
a
,
b
)
∀
a
,
b
,
c
,
d
∈
S
.
(
iii
)
Transitive :
(
a
,
b
)
R
(
c
,
d
)
and
(
c
,
d
)
R
(
e
,
f
)
⇒
a
d
=
c
b
and
c
f
=
e
d
⇒
a
d
c
f
=
c
b
e
d
⇒
c
d
(
a
f
)
=
c
d
(
b
e
)
⇒
a
f
=
e
b
⇒
(
a
,
b
)
R
(
e
,
f
)
∀
a
,
b
,
c
,
d
,
e
f
∈
S
.
Hence,
R
is an equivalence relation.