Q.
Let P(x)=x4+ax3+bx2+cx+320 be a polynomial where a,b,c∈R.
If ∣P(4)∣+∣P′(4)∣+∣P′′(4)∣≤0, then find the value of 11a−b−c.
109
112
Continuity and Differentiability
Report Error
Answer: 9
Solution:
Θ∣P(4)∣+∣P′(4)∣+∣P′′(4)∣≤0 ⇒P(4)=P′(4)=P′′(4)=0 ∴x=4 will be a repeated root of P(x)=0 repeating thrice.
Let root of P(x)=0 be x1,x2,x3,x4 ∴x1=x2=x3=4
P
Product of roots =x1x2x3x4=320 ⇒x4=5 ∴ Sum of roots =4+4+4+5=−a⇒a=−17
Product of roots taken two at a time =x1x2+x1x3+x1x4+x2x3+x2x4+x3x4=b ⇒b=16+16+20+16+20+20=108
and product of roots taken three at a time =x1x2x3+x1x2x4+x1x3x4+x2x3x4=−c ⇒−c=64+80+80+80⇒c=−284 ∴11a−b−c=−187−108+304=