Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P(x)=x10+a1 x9+a2 x8+ ldots ldots+a10 be a polynomial with real coefficients. If P(0)=1, P(1) =1, P(2)=-1, then minimum number of real zeros of P(x) is equal to
Q. Let
P
(
x
)
=
x
10
+
a
1
x
9
+
a
2
x
8
+
……
+
a
10
be a polynomial with real coefficients. If
P
(
0
)
=
1
,
P
(
1
)
=
1
,
P
(
2
)
=
−
1
, then minimum number of real zeros of
P
(
x
)
is equal to
230
106
Application of Derivatives
Report Error
A
5
B
4
C
3
D
2
Solution:
x
→
−
∞
Lim
P
(
x
)
→
∞
and
<
b
r
/
>
x
→
−
∞
Lim
P
(
x
)
→
∞
∴
Minimum number of zeros using I.V.T
=
4
.