Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P = beginpmatrixcos (π/4)&-sin (π/4) sin (π/4)&cos (π/4) endpmatrix and X = beginpmatrix(1/√2) (1/√2) endpmatrix. Then P3X is equal to
Q. Let
P
=
(
cos
4
π
s
in
4
π
−
s
in
4
π
cos
4
π
)
and
X
=
(
2
1
2
1
)
. Then
P
3
X
is equal to
1879
223
WBJEE
WBJEE 2013
Report Error
A
(
1
0
)
B
(
2
−
1
2
1
)
C
(
0
−
1
)
D
(
−
2
1
−
2
1
)
Solution:
Given,
P
=
(
cos
4
π
sin
4
π
−
sin
4
π
cos
4
π
)
=
(
2
1
2
1
−
2
1
2
1
)
⇒
P
=
2
1
(
1
1
−
1
1
)
Now,
P
2
=
P
⋅
P
=
2
1
(
1
1
−
1
1
)
(
1
1
−
1
1
)
=
2
1
(
1
−
1
1
+
1
−
1
−
1
−
1
+
1
)
=
2
1
(
0
2
−
2
0
)
=
(
0
1
−
1
0
)
P
3
=
P
⋅
P
2
=
2
1
(
1
1
−
1
1
)
⋅
(
0
1
−
1
0
)
=
2
1
(
0
−
1
0
+
1
−
1
−
0
−
1
+
0
)
=
2
1
(
−
1
1
−
1
−
1
)
Also, given
X
=
(
1/
2
2
1
)
=
2
1
(
1
1
)
∴
P
3
X
=
2
1
(
−
1
1
−
1
−
1
)
⋅
2
1
(
1
1
)
=
2
1
(
−
1
−
1
1
−
1
)
=
2
1
(
−
2
0
)
=
(
−
1
0
)