Q.
Let P={1,2,3,4,8,16,.......1024}. Consider all possible positive differences of elements of P.Let M is the sum of all these differences and N be the sum of the digits of M then
Given P={20,21,22.....210} ∴M=Sum of all difference =s=1∑10r=0∑s−1(2s−2r) ∴M=s=1∑10[(2s−20)+(2s−2)+(2s−22)+....+(2s−2s−1)] =s=1∑10(2s+2s+....(stimes))−(20+21+......+2s−1)] =s=1∑10[s2s−202−1(2s−1)] =s=1∑10[(s−1)2s+1] =s=1∑10(s−1)2s+s=1∑101 =0+4(1+2⋅2+3⋅22+....+9⋅28)+10 =4+8⋅211+10 (using A.GP.) =14+214=14+(1024)16=16398 ∴N= sum of digits of M=1+6+3+9+8=27
As N=27, which is divisible by 1,3,9 and 27 thus number of divisors of N are 4 and their sum is 1+3+9+27=40