Given that, P=(−1,0) Q=(0,0)
and R=(3,33)
In △AQR, tanϕ=333 ⇒tanϕ=3 ⇒tanϕ=tan60∘ ⇒ϕ=3π
Slope of line QR m1=3−033−0=3 ⇒m1=3
Slope of line QP m2=−1−00−0=0 ⇒m2=0
Let the angle between PQR is θ, then tanθ=∣∣1+m1⋅m2m1−m2∣∣ ⇒tanθ=∣∣1+03−0∣∣=3 or −3 ⇒tanθ=tan32π ⇒θ=32π
[∵(tanθ=3) from figure]
Hence, ∠RQB=2θ=62π=3π
So, the angle bisector making an angle with (+) ive x -axis, is 3π+3π=32π
The equation of angle bisector is ⇒y=mx=tan32π⋅x ⇒y=−3⋅x ⇒3⋅x+y=0