Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P =[1 0 0 4 1 0 16 4 1] and I be the identity matrix of order 3 . If Q =[ q ij] is a matrix such that P 50- Q = I, then ( q 31+ q 32/ q 21) equals
Q. Let
P
=
⎣
⎡
1
4
16
0
1
4
0
0
1
⎦
⎤
and
I
be the identity matrix of order 3 . If
Q
=
[
q
ij
]
is a matrix such that
P
50
−
Q
=
I
, then
q
21
q
31
+
q
32
equals
6398
184
JEE Advanced
JEE Advanced 2016
Report Error
A
52
B
103
C
201
D
205
Solution:
P
2
=
⎣
⎡
1
4
16
0
1
4
0
0
1
⎦
⎤
⎣
⎡
1
4
16
0
1
4
0
0
1
⎦
⎤
P
2
=
⎣
⎡
1
4
+
4
4
2
+
4
2
+
16
0
1
0
+
4
+
4
0
0
1
⎦
⎤
P
3
=
⎣
⎡
1
8
48
0
1
8
0
0
1
⎦
⎤
⎣
⎡
1
4
16
0
1
4
0
0
1
⎦
⎤
=
⎣
⎡
1
8
+
4
48
+
32
+
16
0
1
8
+
4
0
0
1
⎦
⎤
∴
P
n
=
⎣
⎡
1
4
n
2
n
(
n
+
1
)
16
0
1
4
n
0
0
1
⎦
⎤
Now,
Q
=
P
50
−
I
Q
=
⎣
⎡
1
200
20400
0
1
200
0
0
1
⎦
⎤
−
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
⎣
⎡
0
200
20400
0
0
200
0
0
0
⎦
⎤
∴
q
21
q
31
+
q
32
=
200
20400
+
200
=
103