Here, P=P−[Pij]1×1 with Pij=wi+j ∴ When n=1 P−[Pij]n×n=[ω2]⇒P2=[ω2]=0 ∴ when n=2 P=P−[Pij]2×2=[p11p21p12p22]=[ω2ω3ω3ω4]=[ω211ω] p2=[ω211ω][ω211ω]⇒ p2[ω4+1ω2+ωω2+ω1+ω2]=0
When n=3 p=[pij]3×3=⎣⎡ω2ω3ω4ω3ω4ω5ω4ω5ω6⎦⎤=⎣⎡ω21ω1ωω2ωω21⎦⎤ p2=⎣⎡ω21ω1ωω2ωω21⎦⎤⎣⎡ω21ω1ωω2ωω21⎦⎤=⎣⎡000000000⎦⎤=0 ∴p2=0, when n is a multiple of 3. p2=0, when n is not a multiple of 3. ⇒n=57 is not possible ∴n=55,58,56 is possible.