Let, Z1 satisfies Zn+1=−Z ⇒Z1 also satisfies ∣Zn+1∣=∣−Z∣ ⇒Z1 also satisfies ∣Zn+1∣=1 ⇒∣Z1n+1∣=1 … (1)
Now, ∣Z1∣=1⇒∣Z1n∣=1 … (2)
From (1) & (2) ,
we get, Z1n must be the point of intersection of ∣Z∣=1 & ∣Zn+1∣=1 ⇒Z1n=ω or ω2 {where, ω is non-real cube root of unity} ⇒Z1 can be ω or ω2 ⇒n is of the form of 3k+2 .