Q.
Let m be the unit vector orthogonal to the vector i^−j^+k^ and coplanar with the vectors 2i^+j^ and j^−k^. If a=i^−k^, then the length of the perpendicular from the origin to the plane r⋅m=a⋅m is
The vector m is coplane with (2i^+j^) and (j^−k^)
So, m=x(2i^+j^)+y(j^−k^) m=2xi^+(x+y)j^−yk^ ∴m is orthogonal to the vector i^−j^+k^, so 2x−(x+y)−y=0 ⇒x=2y ...(i) ∴∣m∣=1 ⇒4x2+(x+y)2+y2=1 ∴16y2+9y2+y2=1 ⇒26y2=1 ⇒y=±261.
So, x=±262 ∴m=±(264i^+263j^−261k^)
The length of the perpendicular from the origin to the plane r⋅m=a⋅m is
So, ∣a.m∣=∣∣(i^−k^)⋅[264i^+263j^−261k^]∣∣ =264+261=265 units.